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CALCULATION OF THE TEMPERATURE FIELD IN A PLANE CHANNEL WITH
NONUNIFORM HEATING OF THERMALLY CONDUCTING WALLS

M. S. Povarnitsyn and E. V. Yurlova
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UDC 536.12

A determination is made of the steady temperature of the walls of a
channel with Poiseuille gas flow and with heat sources iu the thermally
conducting walls. The source power density has a parabolic distribution
law.

A number of papers has recently appeared on the
investigation of stream temperature profiles for
Poiseuille flow in tubes and annular and plane chan-
nels, and under various heat transfer conditions [1-
5]. In these no account is taken of heat due to inter-
nal friction and the work of pressure forces, nor of
the heat flux along the wall.
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Fig. 1. Dependence of wall temperature on

coordinate 7 with inhomogenous heat sources,

for K==, $;=1:1) and 2) g/gy = 1 + 77,

€/g, = 0 and 4, respectively; 3) and 4) g/g, =

=1+21— 1% £/gy =0 and 4; 5) and 6) g/g, =
=1, &/gy= 0 and 4.

In the present paper, which is a continuation of
[6], these factors are taken into account in calculating
the temperature of the walls of a plane channel formed
by two parallel, semi-infinite plane plates of thick-
ness b, distant 2h apart. The thin walls of the channel
contain heat sources whose power density depends on
the coordinate x, The outside surfaces of the walls
are thermally insulated, and the relative variation of
absolute temperature in the channel is small, The
temperature distribution at the channel inlet and the
heating of the walls are symmetrical relative to the
mid-plane of the channel.

The origin of coordinates Oxy is taken to be in the
center of the inlet section of the channel, the Ox axis
being directed along the flow, and Oy toward the wall,

The equation for the problem and part of the bound-
ary conditions may be written as*

oT { dP (au )2] AT
00— — 1 pl— | =k—,
Ox )

7 dx dy ay?

) ven 2
u:ium [ ) um=——h—-£,'(1)
2 h ) 3 dx

9T _ 0 when 4 =0, @)
dy
T =T,(y) when x =0, 0<y <h. @)

The boundary condition at the wall (y = h) is ob-
tained from the heat conduction equation for a ther-

mally thin plate:
bi— +G(x)—— —=0when y=h  (4)
X

Let the wall be thermally insulated at x = 0; then

g'T‘ =0whenx =0, 0<y <h. ®)
X

We shall write (1)—(5) in dimensionless quantities:

a8z, ¥ y 00
1—gf) —2 = —g(l —38) = —, (6)
e ( e
[¢Xi)
M o0 when E=0, (")
2%

% =%, whent=0 0<E<], (8)
gf}(},_——K g(r)+@..lro when & =1, 9)
J1? ag

98 Owhen0<i< 1. (10)
dt

When K > 1 we may neglect heat conduction along the
wall. We note that the channel wall temperature at the

*It was shown in [2] that the thermal conductivity of
the gas along the channel may be neglected when
Re Pr > 10.
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inlet #(0, 1) is not equal to 4¢(1), but results from
heat transfer along the channel walls and in the chan-
nel itself,

We carry out a Laplace transformation with re~
spect to 7:

2 . __aen
O O —per — oy —) - S5
dgt o
with boundary conditions
d;’: -0 when £ =0, (12)

LL@_,: pzﬁsz ——p\‘)(O,l)

—g* when g = L. 13
i X £ 13)

The solution of (11), taking account of (12}, may be
written as [6]

¢ Y
e =gfd+ [ o (] phav)ay], (14)
h 0

0@ - exp(~ Lt ) p(A=YE L V),

o=—p, (15)

B B (8) (8 — 1) + (1 —38). (16)
o
The function ¢ is the solufion of the homogeneous
equation
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Fig. 2. Temperature distribution at the wall

with K = «, & = 2 and nonuniform gas tempera-

ture at the inlet: 1) and 2) $,=2 — £%, g=0.5

and 2, respectively; 3) and 4) ¢, = £%, g= 0.5
and 2; 5) and 6) ¥, =1, g= 0.5 and 2.

We obtain the constant of integration d from condition

(13):

d = A} [——g*’—{—aK—‘ﬂ(O,l)—ﬂp_l(l) f(thﬁl -+
0
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Fig. 3. Dependence of wall temperature 4 on

coordinate T when there is heat flow along the

wall (e = 2: 1), 2), 3) g= 0.2; 0.5 and 2, re-
spectively, K= 5; 4) g= 2; K= «,

Here

Ao 00() el 19)
dt K

Putting £ = 1 in (14), we obtain an expression for the
temperature at the wall:

!
8% (1) = A= [(0(0,) e K —g9) (1) — [@hdz]. (20)

0

When g* = ¢ = 0 and J4,(§) = 1 there is no heat trans-
fer, and so 4(0, 1) =1 and $*(1) = ~a™1, 1t follows
from (16) and (20) that

1

A=K g (l)— fE@—1ed 1)

4

We find the solution by dividing (20) by the right side
of (21): '

8 (1) = — la — A~ {gF g (1) —
®(0,1) = Da Ko ()] —

{ 1
— Aot (1 — 38 9dE + [ — D (60— Dedt | (22)
0

b

For simplicity we shall restrict attention to the
case of a parabolic dependence of heat source power
density on coordinate 73

g = go + grv + &7 @3)
It follows that
g% =GP~ + gop? -+ 282072, (24)

It may be seen that ¢ is an integral function of «,
and its expansion for small ¢ is given by
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The poles of (22), taking (24) into account, and there-
fore p = 0 and the roots of the equation A = 0, There

are no other poles or branch points for expression (22).

We now write the complete solution for the wall
temperature in the form of the sum

& (z) = Bo (1) 4 B (1), (26)

where 4(7) is determined by the residues at the point
P = 0 and gives the developed temperature realized at
large 7. The function ¥(r) is the sum of residues rel-
ative to the poles—the root of the equation A = 0—and
gives the wall temperature according to (26), along
with (7).

To obtain the residue at the multiple pole p = 0
(i.e., to calculate the appropriate limits), we expand
(22) in powers of p. Using (25), we obtain (22) in the
form

1o G @it 287 4 4ep/35
P P— 23+ (b + K1) pfcpt + dp)

8 (1) =

_3 g'(g2~1)(f}0- Dde. 27)
2p6

Comparing (27) and (22), we find

~%—+bp+pl<“+6p2+dp”+... = pK-1 4

Fi (1 —V )4, 3/2, VE]}
1___ 1 14y = B ,
[ 1+ )1F1[(l —V ay4, 12,V «a

o= —p.

We-expand the left side in a series with respect to
Va; the powers of o obtained cancel out, and b =
=0.21587, ¢ = —0,075924, d = 0.026833,

Expansion (27) will be sufficient for calculating
the residue of function 4* exp pr at the pole p = 0 of
multiplicity 1-4. For the residues we have

1
6 3 7

. 9
B0l == et (1~§~>ﬂo<§)d_§—(7blgo+
Q
27 9 81
+%cg,+ e glblf—god+—~cbxg-———~blg_)
3 97 .
(—‘go -+ —"‘glbl -+ goC - gﬂbx)T -
— '3—g1+ —S)—'ggbl)Tz— 1 gg‘fs, b1 = b:- K_l. (28)
4 4 2

We determine the function #(7). For this we find
the residues of function (22) near the poles—the roots
of the equation A = 0:
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[kl v3)-

— 01+ V‘E)lﬂ(ﬁ, % 1/'“&)=o. 29)

The roots o of (29) are real and positive, Determin-
ing the residues near the poles of @, we derive*

2 exp (— at)
By (1) = ?“—a@‘——‘

1 _
X {(go - gt 28,07 Fy (ﬁ’ “2— ,V U-) -

o
waexp(l/Q—U')j‘@(E, (1 — 39 dE -

0
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+0(0.1)a?K-1,F, (g, ;m VE)}. (30)
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i
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[2(2*) (2+’ )’“
i
SRR B U \ B S
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When K — «, function &g becomes &, obtained in
[6]. The sum of (28) and (30), according to (26), gives
the solution of the problem. We find the unknown wall
temperature at the channel inlet 40, 1) by putting 7 =
= 0 in the solution and solving the algebraic equation
for #(0. 1):

(31)

: 3 2 ;6
4(0,1) = M“'I[T\g‘(1*:')1‘)0(&)[15_%8_1%] +
b
-y . 1 ——
+M—1}J7D2T [(g(,—gla—1+2g2a-2)1ﬂ (.3, 9 V 0‘)*

% .

*Use was made in (31) of the relation, following

|
e b @E—ne, 2ds,
o

from 21): — 1F1( L ,l/q.} =exp (L Va

2 2
where o are roots of (29).
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The notation here is

2 WYaiFi(p, 1/2,v a)

9 9
A, Z'bego"f'—;(fgl +

27 2 9 27 81 s
+ 2 gt D g 2 hig + - bl (33
g ST T g e (9

A number of examples have been calculated according
to (26), (28), and (30)—(33); the results are shown in
Figs. 1-3. It may be seen that the dimensionless wall
temperature is appreciably reduced (the true temper-
ature increases) when longitudinal heat conduction in
the wall is included. When 7 = 0 the temperature of the
wall is different from that of the gas at the inlet ;=
=1).

NOTATION

cp—specific heat; b—wall thickness; 2h—channel
width; k—thermal conductivity of gas; ky—the same,
for the wall; P—pressure; x = 0—coordinate in stream
direction; 0 < y < h—~coordinate from middle of chan-
nel towall; G—heat source power density; T —absolute
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temperature; Ty--temperature at channel inlet; Ty —a
fixed temperature, Ty, — Ty < Ty u(y)—velocity of
developed flow; u, —mean velocity in channel; C—
velocity of sound in gas; u—viscosity; p—density. Di-

. " 9 Mi(y—1)P
mensionless quantities: v=cp/cp e = 5 ———(T—QJ—J.
[}
G y— T .Yy X 2 Gbh
Tt o h T h R BT k(T T
9 h &

Lo e e (Pr RE)Q, M=uy'C, Y= (Te — TU)/TO' Re = umh £k
4 b Kk

Pr = cou'k; oF; (a, b, x) —degenerate hypergeometric func-

1

tion; f* = \. fexp(—p)d~ i=(1— y’r;)/-i, by=b+ K1 p
0

—variable in the transformed plane o = —p.
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